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Abstract. Temporal topic models often cannot effectively approximate
topics on social media data sets due to the noise levels inherent in these
types of data. Topic-noise models are important for modeling the short,
sparse, noisy posts that we see throughout social media platforms. We
propose using topic-noise models for temporal topic modeling, specifi-
cally D-TND (dynamic topic-noise discriminator). It enables topic and
noise distributions to be generated together, modeling both the rela-
tionships between words in documents and the evolution of words and
noise. We also propose Dynamic Noiseless Latent Dirichlet Allocation
(D-NLDA), which integrates D-TND’s time-dependent noise distribution
with the topic distributions of Dynamic LDA, and show its propensity
for improving dynamic topic models by effectively separating noise and
topics on two large Twitter data sets.

1 Introduction

Topic models are important unsupervised tools for quickly understanding large
textual data sets. They can be particularly useful when attempting to under-
stand the discussion surrounding a large number of social media posts [4, 22, 26].
A number of topic models have been designed specifically to more accurately
model social media data [5, 27, 16, 21]. More recently, a class of topic models
called topic-noise models was proposed to jointly model topic and noise distri-
butions on social media data [8]. None of these models incorporate a temporal
dimension. Temporal topic models enable researchers to not only identify the
relevant underlying topics in a data set, but also to track the evolution of these
topics through time. Recently, there has been a renewed interest in temporal
topic models, with the publication of a graph-based dynamic topic model [12],
and an embedding-based dynamic topic model [10]. Even though these and other
dynamic topic models have been proposed, they do not explicitly model noise.

In this paper, we adapt a topic-noise model to a temporal social media setting,
with the goal of improving topic coherence by successfully removing noise from
evolving topics. We accomplish this by adapting a topic-noise model, Topic-Noise
Discriminator (TND) [8] to a temporal setting, Dynamic Topic-Noise Discrim-
inator (D-TND). D-TND takes advantage of the joint topic-noise distribution
generation of TND, while at the same time enabling the tracking of topics and
noise through time by passing topic and noise distributions from one time period



to the next. We then propose a new temporal model, Dynamic Noiseless Latent
Dirichlet Allocation (D-NLDA), a temporal version of Noiseless Latent Dirich-
let Allocation (NLDA) [8] that integrates the proposed D-TND with Dynamic
LDA (D-LDA). The advantage of this approach is that the noise distribution
of D-TND and topic distribution of D-LDA evolve together, allowing for more
accurate filtering of noise, and better-trained topic-word distributions at each
time period. As we will see, D-NLDA is much greater than the sum of its parts.

The contributions of this paper are as follows. 1) We propose a new
temporal topic-noise model that models noise and topics over time. 2) We propose
a new temporal topic model that accounts for noise and generates higher quality
topic sets. 3) To improve scalability, we introduce a vocabulary limiting function
that reduces the vocabulary size of temporal data sets while maintaining topic
quality. 4) We conduct an empirical analysis, both quantitative and qualitative,
using two large Twitter data sets, that demonstrates the abilities of D-TND and
D-NLDA to scale to accommodate such data sets, and to successfully identify
high-quality topics. 5) We publish our model and evaluation code for others to
use to continue advancing research in the field of temporal topic modeling.1

The paper is organized as follows: Section 2 presents related literature. Sec-
tion 3 defines the notation used throughout the paper, details the models that
were used in creating our proposed models, and presents our proposed models.
Section 4 presents our quantitative and qualitative empirical analyses of our
models. Finally, Section 5 presents our conclusions.

2 Related Literature

2.1 Static and Social Media Topic Models

The most well-known topic model is Latent Dirichlet Allocation (LDA) [3]. The
basis upon which many topic models are built today, LDA is a bag-of-words
model that approximates topics by maximizing the likelihood of documents in a
k-dimensional Dirichlet distribution, where k is the number of topics. As docu-
ments are observed, words are probabilistically placed into topics and the prob-
ability distribution of each document over the topic set slowly changes to reflect
the co-occurrence of words within the data set. After the model is trained, words
that occur together in the same documents are more likely to be in the same
topic. The result is topics containing words that are related according to the
observed documents.

It has been apparent for some time that social media data sets require
specially-constructed topic models to deal with the noise levels, short length,
and sparsity of the data at hand. Biterm Topic Model detects topics, not from
unigrams, but from bigrams generated from text [27], decreasing the vocabu-
lary to improve quality. Self-Aggregating Topic Model (SATM) follows a similar
vein, aggregating related short posts into longer pseudo-documents and generat-
ing topics from the pseudo-documents. GPUDMM [16] improves the coherence

1 Our code can be found at https://github.com/GU-DataLab/topic-modeling



of topics by sampling related words from an embedding space. Percolation-based
Topic Models (PTM) [5] detects topics in social media data using a graph struc-
ture. A word co-occurrence graph is broken down into small communities and
then built back up into small but coherent topics. For a more complete survey
of unsupervised topic models, including ones designed for social media, see [6].

Topic-Noise Models [8] jointly model topics and noise distributions in or-
der to more effectively remove noise from topics. Churchill and Singh propose a
topic-noise model called Topic-Noise Discriminator (TND), which adds a noise
distribution to LDA [3]. They use TND in an ensemble with LDA, called Noise-
less Latent Dirichlet Allocation (NLDA), to create low-noise topics in domain-
specific social media data sets. In this paper, we use the static TND and NLDA
as a starting point to build two dynamic models, D-TND and D-NLDA.

2.2 Temporal Topic Models

Topics over Time (TOT) [25] jointly models time and topics, allowing for a con-
tinuous timeline of topics as opposed to discretized time periods like in D-LDA.
Other early temporal topic models include MTTM [18], continuous DTM [24],
Topic Tracking Model [13], and MDTM [14]. Dynamic Topic Models (D-LDA) [2]
is a direct temporal adaptation of LDA [3]. Approximated probability distribu-
tions from a given time period are passed into the subsequent time period, in
order to track the evolution of topics over time. We will draw on this temporal
structure to create our dynamic topic-noise model, which incorporates a noise
distribution into the model.

Bhadury et al. optimize D-LDA using multithreading and an optimized infer-
ence algorithm [1]. Topic Flow Model (TFM) [9] models temporal social media
data using a graph structure. It runs a directed depth-first search from selected
seed words to connected words and back to confirm mutual association. Dy-
namic Embedded Topic Model (D-ETM) [10] takes the Embedded Topic Model
(ETM) [11], and adds a time-varying aspect. D-ETM runs ETM for each time
period in the data set, passing parameters into the next time period like in D-
LDA. The graph-based Dynamic Topic Model (GDTM) [12] is a scalable dynamic
topic model for social media. The model assigns documents to topics based on
the overlap of documents’ graph representations, and partitions the documents
based on graph density. One issue with GDTM is that it does not output the
most probable words per topic, instead opting to output partitioned documents.
Because of this, it is not directly comparable to models such as DTM, D-ETM,
and our proposed models. In our experiments, we test our models against D-
LDA, TFM, ToT, and D-ETM. The largest difference between our models and
this previous work is that we explicitly model noise as a separate distribution.
None of these other dynamic models do that.

3 Approach

In this section, we define our notation (Section 3.1) and review D-LDA, TND,
and NLDA (Section 3.2). We then describe how we adapt the topic-noise models



TND and NLDA to a dynamic setting to produce D-TND (Section 3.3) and
D-NLDA (Section 3.4). We then propose a method for improving the scalability
of dynamic topic models, with the goal of producing dynamic models capable of
handling large social media data sets (Section 3.5).

3.1 Notation

Let D represent a dataset consisting of M documents, where D = {d0, d1,
. . . , dM−1}. A document d is a group of N words, where d = {w0, w1, . . . , wN−1}.
A vocabulary V is the set of unique words in D. In our context, a word is a
unigram. However, words can be replaced by phrases without loss of generality.

A topic z consists of ` related words, z = {w0, w1, . . . , w`−1}. The words in z
should be coherent and interpretable by a human. A topic set Z contains k topics,
Z = {z0, z1, . . . , zk−1}, that represent a summary of D. A noise distribution Ω is
a probability distribution over V , where each word has a non-zero probability of
being a noise word. In the case of temporal models, we use discretized time. We
refer to a data set as consisting of T time periods, {t0, t1, . . . , tT }, where topics
within a time period are constructed together.

3.2 Dynamic LDA, Topic-Noise Discriminator, & Noiseless LDA

Dynamic LDA (D-LDA) was designed to approximate topics over time, but does
not take into account the noise inherent in social media data [2]. Topic-Noise
Discriminator (TND) was designed to simultaneously approximate noise and
topic distributions in social media data sets. While it can be used as a standalone
topic model, it is best used in an ensemble, like Noiseless LDA (NLDA)[8]. NLDA
leverages the noise distribution of TND and topic-word distribution of LDA to
produce more coherent, high quality topics in social media data sets [8]. We
briefly describe these core components of our dynamic topic-noise models here.

D-LDA. D-LDA defines a topic-word distribution βt,k, where t is the time
period, and k is the number of topics. For a document d, its document-topic
distribution αt,d is a probability distribution over βt. When generating a word
for document d on time slice t, a topic z is chosen from βt conditioned on αt,d.
The word wt,d is drawn from βt,z. This results in topics that are generated
relative to time, as well as the observed documents.

TND. Topic-Noise Discriminator is a generative model that assumes that
documents are a mixture of topics and noise. Words are drawn from a mixture of
the topic-word distribution and noise distribution to generate documents. Each
word in an observed document is assigned to the noise or topic-word distribution,
based on its prior probabilities of being in each. A Beta distribution (Equation 1)
is used to determine whether a word belongs to the noise or topic distribution. βi

z

is the frequency of word i in topic z, and Ωi is the frequency of word i in the noise
distribution. The γ parameter can be increased to weight the Beta distribution
toward assigning a word to the chosen topic over the noise distribution.

λ = Beta(
√
βi
z + γ,

√
Ωi) (1)



NLDA. While TND effectively models noise, it does not always indepen-
dently find the strongest topics. Noiseless LDA [8] joins the noise distribution
from TND with the topic distribution of LDA [3] to produce more coherent
topics than those generated by TND or LDA. Assuming that we have a noise
distribution Ω from TND and topic-word distribution βz from LDA, NLDA in-
tegrates them based on each word’s probability of being in the noise distribution
and topic-word distribution for a given topic, in a process similar to Equation 1.

3.3 Constructing a dynamic topic-noise model

We now describe how D-TND is constructed. βt,k is the topic-word distribution
for t over k topics. The document-topic distribution αt is a probability distri-
bution over βt. α and β are initially group Dirichlet priors (document-topic and
topic-word distributions, respectively) in the first time period, but once trained,
are passed to future time periods as individual priors. αt and βt are initialized
from their t− 1 counterparts.

We define Ωt to be the noise distribution at time t. Like αt and βt, Ωt is
conditioned on Ωt−1. This inherently assumes that words that were noise in t−1
are still noise in t. While this will make it harder for noise words from t − 1 to
be included in topics, it does not make it impossible, merely less likely.

Fig. 1: Plate notation for D-TND, for three time periods.

Figure 1 shows plate notation for D-TND. Observed words are designated as
noise or topic words within a time period based on a Beta distribution condi-
tioned on the word’s probability of being in the chosen topic or in noise. This
process is represented by λ in Figure 1, and is tuned by γ. The designation is
indicated by the switching variable x. For a given time period t, we generate a
document d as follows:

1. Draw the number of words N for d.



2. Draw the topic distribution θt,d from the Dirichlet distribution, conditioned on αt.
3. For each word wi, 0 ≤ i < N :

(a) Draw a topic zi from the topic distribution θt,d.
(b) Draw a word from either zi or the noise distribution Ωt, according to λt,

indicated by switching variable x.
(c) If drawing from zi, draw wi from βt,zi .
(d) If drawing from Ωt, draw wi from Ωt.

3.4 Constructing dynamic NLDA

D-TND’s most versatile feature is its noise distribution, which is trained along-
side topics. Like TND for static models, D-TND can be easily integrated into
generative temporal topic models. This makes D-TND particularly useful be-
cause researchers can use it in concert with whichever model they prefer.

Just as NLDA integrates TND’s noise distribution and LDA’s topic-word
distribution, D-NLDA integrates D-TND’s noise distribution and D-LDA’s topic-
word distribution. To create D-NLDA, we train a noise distribution Ω on D for
each time period t ∈ T using D-TND. Our assumption that noise and topics both
evolve over time and in relation to each other allows us to track and integrate
topics and noise in the style of NLDA, with a temporal aspect. We generate
topics on D using D-LDA, and combine D-LDA’s topic-word distribution βt, k
with D-TND’s Ωt to create topics for each time period. A word is removed or
retained using the Beta distribution, conditioned on βi

t,z and Ωt,i (Equation 2).

Beta

(√
βi
t,z + γ,

√
Ωt,i(φ/k)

)
(2)

After the status of wi has been determined, we follow the same guidelines as
NLDA, incrementing Ωt,i by one if wi is noise, or by βi

t,z if wi belongs to z. This
ensures that, for time period t only, wi has a high chance of not being put in
another topic if it already belongs to one. As Ω has already been computed for
all t ∈ T , this does not affect the status of wi in future time periods.

3.5 Vocabulary Reduction to Improve Topic Model Performance

As we mentioned in Section 1, topic models are often too slow to infer topics
on large data sets in a temporal setting. The original D-LDA [2], D-ETM [10],
and ToT [25] only show results on data sets of tens of thousands of documents.
In order to facilitate better scaling for topic models, we propose reducing the
vocabulary size of data sets.

We define a vocabulary limiting function (VLF) to be a function that removes
words from the vocabulary V , resulting in a smaller vocabulary V ′. We define
the frequency of a word wi ∈ V to be fw. Given a threshold fmin, we compute
the VLF as follows:

V ′ = V ′ ∪ {wi} ∀wi ∈ V |fwi
> fmin (3)

In practice, we set fmin such that |V ′| is approximately equal to some tar-
get vocabulary size. It is also worth pointing out that this approach indirectly



reduces the size and possibly the number of documents. Instead of removing
documents that may have important words, we remove words from documents
that are less likely to be high probability words in a topic model. We evaluate
the effects of VLF in Section 4. We note that the performance impact of this
may be small in cases where the lowest frequency words are much less frequent
than the average word.

4 Empirical Evaluation

In this section, we present our empirical evaluation of D-TND and D-NLDA using
quantitative and qualitative approaches. We begin by describing our experimen-
tal setup, including data sets, preprocessing, and model parameters (Section 4.1).
We then present a quantitative evaluation (Section 4.2), and a qualitative eval-
uation of our models’ performance (Section 4.3).

4.1 Experiment Setup

Baseline Algorithms. In our experiments, we tested against four state-of-
the-art temporal topic models: D-LDA [2], ToT [25], TFM [9], and D-ETM [10].
They are each described in Section 2.

Data Sets. In our analysis, we use two Twitter data sets. The first data
set contains posts about the 2020 United States Presidential Election from Au-
gust 1 to November 14, with weekly time periods. We refer to this data set as
Election 2020. The second data set, Covid-19, contains posts about the Covid-19
pandemic, collected between March 2020 and February 2021, with monthly time
periods. We collected these documents using hashtags related to the election and
Covid-19, respectively, via the Twitter Streaming API, and randomly sampled
200,000 posts per time period.2

We use our vocabulary limiting function (VLF) to create different versions of
each data set. The large version is the full vocabulary, (fmin = 0). We set fmin

such that |V ′| ≈ 10, 000 for each time period to get medium-size data sets.3 fmin

was set such that |V ′| ≈ 5, 000 for each time period for small-size data sets.4

Table 1 shows the exact effects of the VLF for each data set. While there is a
significant reduction in vocabulary, the number of documents remains high. In
Covid-19, just over 100,000 documents, or about 4%, are lost, while in Election
2020, about 200,000 documents, or about 6.67% are lost. As we will see, this loss
in documents has very little effect on the quality of topics.

Text Preprocessing. Text processing can have a positive impact on topic
model performance [7]. For our data sets, we tokenize on whitespace, remove

2 Leaving data sets in their original form, with a large skew in data set size from
time period to time period, reinforces the skews in more pronounced ways in the
probability distributions, leaving effects on future time periods.

3 fmin = 15, 20 in Election2020 and Covid-19 for the medium-size data sets.
4 fmin = 40, 50 for Election2020 and Covid-19 for the small-size data sets.



Table 1: Data Set Qualities for different size variants of vocabulary. |D|/t and
|V |/t are average data set size and vocabulary size within a time period.

|D| |D|/t |V | |V |/t

Covid-19
Large 2,400,103 200,008 1,041,552 172,116

Medium 2,326,370 193,864 28,198 10,483
Small 2,292,266 191,022 13,890 5,645

Election 2020
Large 3,000,042 200,002 648,193 96,671

Medium 2,836,549 189,103 33,391 9,484
Small 2,800,209 186,680 18,010 5,153

lowercase text, remove URLs, punctuation (including hashtags), and stopwords.
We also remove deleted posts and user tags.

Model Parameters. We conduct a sensitivity analysis for D-TND and
D-NLDA, testing each model with an array of different parameter settings. Due
to space limitations, we present the results for the best-performing settings. For
D-TND, we found the best parameter settings to be α = 1, β = 0.01, γ = 25,
and k = 30. The best settings for D-NLDA were the same settings as D-TND,
with φ = 10.5 For D-LDA, the best parameter settings were α = 1, β = 0.01,
and k = 30. The chosen α and β parameters consistently resulted in better
topic quality than other options. The γ parameter is less sensitive than α and
β, but γ = 16 was also a reasonable choice. We found that γ = 0 or 36 were too
extreme of settings for our data sets, designating too few and too many words
as noise, respectively. Changing the φ parameter can lead to far more coherent
topic sets. We found that φ = 5 resulted in too few noise words being filtered
from topics, but that φ > 15 resulted in some quality words being removed from
topics. We note that it is straightforward to quickly iterate through φ values,
since the filtering of noise is the fastest part of the model. For D-ETM and ToT,
the parameters suggested in the papers were used, with k = 30 to match the
parameters of the other models. While a sensitivity analysis was conducted, It
is possible that with more extensive hyperparameter tuning, performance could
be improved.

4.2 Quantitative Analysis

Evaluation Metrics Similar to previous work, we assess a model’s ability
to detect coherent, interpretable topics using a normalized point-wise mutual
information score (NPMI) [15]. NPMI attempts to quantify the relatedness of two
words within a topic, given their cofrequency, and is a commonly used evaluation
metric [8, 10, 16, 11, 21, 20]. For a pair of words (x, y), we define the probability
of them appearing in the same document as P (x, y). We define the probability

5 Parameters for sensitivity analysis across our models: k = {10, 20, 30, 50, 100}, α, β =
{0.01, 0.1, 1.0}, γ = {0, 16, 25, 36}, φ = {5, 10, 15, 20, 25, 30}



Table 2: Time per iteration on each data set (s=seconds, m=minutes).

Covid-19 Election 2020
Model Large Medium Small Large Medium Small

D-TND 19.0 s 18.2 s 14.6 s 21.9 s 15.2 s 13.8 s
D-LDA 1.5 s 1.4 s 1.32 s 2.0 s 1.2 s 0.9 s
D-NLDA 20.6 s 19.7 s 16.0 s 23.6 s 16.4 s 14.8 s
D-ETM 480 m 117 m 87 m 360 m 177 m 138 m

of any word w appearing in a document as P (w). Using these probabilities, we
compute the NPMI of a topic z ∈ Z:

NPMI(z) =

∑
x,y∈z

log(
P (x,y)

P (x)P (y)
)

− log(P (x,y))(|z|
2

)
A higher NPMI indicates high topic coherence and lower noise penetration, or
that a topic model is creating meaningful topics. We refer to the topic-wise NPMI
score as topic coherence.

Unfortunately, a model can, in theory, find ten variants of the same mean-
ingful topic. We care about the ability of a topic model to detect unique topics
from the data,.Topic diversity is the fraction of unique words in the top 20 words
of all topics in a topic set [11]. A model with high topic diversity is able to find
almost entirely unique topics, while a model with low diversity is not able to
successfully delineate between unique topics. Topic quality, proposed by Dieng
et al. [10], is the product of the coherence and diversity scores. As we care about
both metrics, a product of the two gives a good overall score for a topic set.

Given the size of our data sets, we are concerned about efficiency. For our
experiments, models were run on a machine with twelve 2.2GHz virtual cores,
with 50GB of memory. D-TND, D-NLDA, D-LDA, and D-ETM take advantage
of parallelization or multi-threading (Mallet for D-LDA and D-TND [17], Py-
Torch for D-ETM [19]). ToT did not scale to the size of our data sets. It was
allowed to run for three days, and did not complete an iteration for either data
set. TFM ran for three days and did not finish constructing topics. The topics
found contained only a single word, meaning its topic coherence would be zero.
As a result, we do not include TFM and ToT in the analysis that follows.

Efficiency. To analyze efficiency, we compute time per iteration for the
other methods (see Table 2). As we can see, D-LDA is the most efficient model.
Because it is only computing a topic distribution and not a noise model as well,
this result is not surprising. D-TND and D-NLDA are the next most efficient
models and are comparable to each other. Our models are between 300 and 1500
times faster than D-ETM, the most recent temporal topic model in our study.

D-ETM is implemented using PyTorch, a highly optimized Python frame-
work for neural networks [19]. It is run for ten iterations on the small and medium



(a) Election 2020 results. (b) Covid-19 results.

Fig. 2: Coherence (y-axis) and Diversity (x-axis)

data sets and five iterations on the large data set given that each iteration took
approximately 8 hours to run. D-LDA and our models were run for 500 itera-
tions. Highlighting its ability to work on larger data sets. Part of the differential
in computation time between D-ETM and the other models is likely due to the
fact that D-ETM is implemented in Python, whereas the other models are im-
plemented in Java. It is possible that a Java implementation of D-ETM would
be faster than its Python implementation, but given the complexities of the un-
derlying model, it is unlikely that a Java version of D-ETM would be faster than
D-TND or D-NLDA.

Coherence and Diversity. This section focuses on the quality of the mod-
els. Figure 2 plots the mean coherence and diversity score for D-TND (circles)
and D-NLDA (stars) alongside D-LDA (squares) and D-ETM (X) for each data
set. Coherence is plotted on the Y-axis, and diversity is plotted on the X-axis.
The results for the large-size data set are colored red, the medium-size blue, and
the small-size green. The closer to the top-right corner of the plot a model is, the
better. D-NLDA performs the best out of any model on both data sets. In the
Election 2020 data set, there’s little difference in D-NLDA’s performance across
the different-size data sets. In the Covid-19 data set, we see a slight deterioration
in terms of coherence when we use VLF to remove words from the vocabulary.
Table 1 shows the difference between the Election 2020 and Covid-19 data sets
in terms of how many words are removed from each vocabulary. By aiming to
retain approximately 10,000 and 5,000 words per time period in the medium
and small data sets, far more words were removed from the Covid-19 vocabu-
lary than the Election 2020 vocabulary. It seems that in the case of Covid-19,
we removed too many words from the vocabulary. This adversely affected the
topic quality. In the Election 2020 data set, we retained all or most of the topic
words, which is reflected in the maintained high topic quality across data set
sizes. While we can certainly improve the scalability of topic models by reducing
vocabulary size, removing too many words can sacrifice topic quality.

D-NLDA has a slightly higher (1.5%) coherence than D-TND, but a 25%
higher diversity score. Compared to D-LDA, its diversity is 7% higher, and its
coherence is 8% higher. D-NLDA once again is the best model on all data set
sizes, beating D-TND by 0.35 in coherence and 14% in diversity, and beating
D-LDA by 0.64 in coherence and 7% in diversity. D-ETM’s poor performance



(a) Election 2020 results over time. (b) Covid-19 results over time.

Fig. 3: Topic Quality Plot for Election2020 and Covid-19 medium-size data sets.

is likely due to its inability to finish enough iterations in a reasonable amount
of time to detect high-quality topics. Finally, for all models except D-ETM, the
vocabulary size had little effect on the overall topic quality. The low variance in
performance on D-TND, D-LDA, and D-NLDA reflects our theoretical assertion
that removing the lowest frequency words should have very little affect on topic
model performance. For D-ETM, the coherence of topics increases with the use
of VLF, indicating that D-ETM benefits from smaller vocabularies.

In order to understand how models perform over time in relation to one
another, we plot topic quality, the product of the coherence and diversity scores,
for each model in each time period in Figure 3. Plotting topic quality over time
highlights the similarity of D-NLDA and D-LDA, but also highlights the clear
improvement of D-NLDA with the addition of D-TND’s noise distribution.

Table 3: Percent judge agreement on Covid-19 temporal topics.

Topic Vaccines Lockdowns Cases Testing Schools Masks Global Impact Economy India China

Agreed % 100 100 100 100 100 100 100 100 80 100

4.3 Qualitative Analysis

Our qualitative analysis shows D-NLDA’s ability to track topics through time.
For the Covid-19 data set, we asked five human judges to individually label ten
topics generated by D-NLDA that persisted throughout every time period. In
Table 3, we show agreement between the judges, with the agreed upon label
for each topic. For all topics but one, every judge independently concluded the
same topic label. These findings indicate that D-NLDA is able to generate high
quality topics that humans can easily comprehend.

We highlight this ability with a deeper look at the evolution of the vaccine
topic through time periods, seeing it evolve and grow (see Figure 4). Words
highlighted green appeared in the topic in the previous time period, and words
highlighted yellow appeared in the topic in any previous time period. The topic
starts out with a wish for a vaccine and with concern for healthcare workers. It
evolves into a reality in the middle of 2020 and goes through drug trials. Finally,
the vaccine is approved in late 2020 and rolled out at the beginning of 2021.



Fig. 4: Evolution of the Vaccine topic in the Covid-19 medium-size data set.

Fig. 5: Election 2020 Topic proportions (y-axis) over time periods (x-axis).

D-NLDA allows us to see a very detailed evolution of the Vaccine topic that
contains limited noise throughout the entirety of the year, showing the promise
of topic-noise models within a temporal setting.

In the Election 2020 medium data set, we show the ability of D-NLDA to
accurately track multiple relevant topics through time. To produce topic labels
for this data set, we relied on a manually-generated topic set, curated by political
scientists who closely studied the 2020 Election on social media platforms [23].
Figure 5 shows how the topic proportions of selected topics change throughout
the election. New topics emerge and disappear throughout the campaign. We
can see the large impact of the party conventions in time periods two and three
(late August 2020), and how quickly talk about conventions ceases after they
are over. The same happens with topics about Presidential and Vice Presidential
Debates in time periods eight to ten (early October).

The Conventions and Debates topics represent bursty topics, which appear
out of nowhere and disappear quickly as attention turns away from them. These
bursty topics could be missed or muddled with other topics by static mod-



els.In general, this topic flow visualization highlights the ability of a dynamic
topic-noise model like D-TND or D-NLDA to produce highly relevant and easily
understandable topics with a temporal aspect. The ability to understand how
topics evolve over an election is important both for voters and candidates.

5 Conclusions

In this paper we create a dynamic temporal-noise model that incorporates a
noise distribution into a temporal topic model for the first time (D-TND), and
weave together D-TND with the well-known D-LDA model to create D-NLDA.
These approaches bring to temporal topic models the noise-filtering benefits of
topic-noise models that are so necessary for social media data sets.

We demonstrate the ability of our proposed methods to both scale to large
temporal data sets, and produce high quality topics on the data sets through
time periods spanning weeks and months. We show how using a vocabulary
limiting function (VLF) can speed up topic models, and in some cases, produce
better topics. Finally, we share our code on GitHub for others to use.6

Acknowledgements

This work was supported by the National Science Foundation grant numbers
#1934925 and #1934494 and by the Massive Data Institute (MDI) and McCourt
Impacts at Georgetown University. We would also like to thank the Mosaic
Project and SSRS for access to the Covid-19 Survey data set.

References

1. Bhadury, A., Chen, J., Zhu, J., Liu, S.: Scaling up dynamic topic models. In: The
Web Conference (WWW) (2016)

2. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: International Conference on
Machine Learning (ICML) (2006)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

4. Bode, L., Budak, C., Ladd, J.M., Newport, F., Pasek, J., Singh, L.O., Soroka, S.N.,
Traugott, M.W.: Words that matter: How the news and social media shaped the
2016 Presidential campaign. Brookings Institution Press (2020)

5. Churchill, R., Singh, L.: Percolation-based topic modeling for tweets. In: KDD
Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM)
(2020)

6. Churchill, R., Singh, L.: The evolution of topic modeling. ACM Computing Surveys
(CSUR) (2021)

7. Churchill, R., Singh, L.: textprep: A text preprocessing toolkit for topic modeling
on social media data. In: The DATA Conference (2021)

6 Our code can be found at https://github.com/GU-DataLab/topic-modeling



8. Churchill, R., Singh, L.: Topic-noise models: Modeling topic and noise distribu-
tions in social media post collections. In: International Conference on Data Mining
(ICDM) (2021)

9. Churchill, R., Singh, L., Kirov, C.: A temporal topic model for noisy mediums.
In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
(2018)

10. Dieng, A.B., Ruiz, F.J.R., Blei, D.M.: The dynamic embedded topic model. CoRR
(2019)

11. Dieng, A.B., Ruiz, F.J., Blei, D.M.: Topic modeling in embedding spaces. arXiv
preprint arXiv:1907.04907 (2019)

12. Ghoorchian, K., Sahlgren, M.: Gdtm: Graph-based dynamic topic models. Progress
in Artificial Intelligence 9, 195–207 (2020)

13. Iwata, T., Watanabe, S., Yamada, T., Ueda, N.: Topic tracking model for analyz-
ing consumer purchase behavior. In: International Joint Conference on Artificial
Intelligence (2009)

14. Iwata, T., Yamada, T., Sakurai, Y., Ueda, N.: Online multiscale dynamic topic
models. In: Conference on Knowledge Discovery & Data Mining (KDD) (2010)

15. Lau, J.H., Newman, D., Baldwin, T.: Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality. In: Conference of the European
Chapter of the Association for Computational Linguistics (EACL) (2014)

16. Li, C., Wang, H., Zhang, Z., Sun, A., Ma, Z.: Topic modeling for short texts with
auxiliary word embeddings. In: SIGIR Conference on Research and Development
in Information Retrieval (2016)

17. McCallum, A.K.: Mallet: A machine learning for language toolkit. (2002)
18. Nallapati, R.M., Ditmore, S., Lafferty, J.D., Ung, K.: Multiscale topic tomography.

In: Conference on Knowledge Discovery & Data Mining (KDD) (2007)
19. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems (NIPS) (2019)

20. Qiang, J., Chen, P., Wang, T., Wu, X.: Topic modeling over short texts by incor-
porating word embeddings. In: Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD) (2017)

21. Quan, X., Kit, C., Ge, Y., Pan, S.J.: Short and sparse text topic modeling via self-
aggregation. In: International Joint Conference on Artificial Intelligence (2015)

22. Singh, L., Bode, L., Budak, C., Kawintiranon, K., Padden, C., Vraga, E.: Under-
standing high-and low-quality url sharing on covid-19 twitter streams. Journal of
Computational Social Science 3(2), 343–366 (2020)

23. Singh, L., Ladd, J., Pasek, J., Traugott, M., Budak, C., Soroka, S., Agiesta, J.,
Sparks, G.: The breakthrough [polling project] (2020)

24. Wang, C., Blei, D., Heckerman, D.: Continuous time dynamic topic models. arXiv
preprint arXiv:1206.3298 (2012)

25. Wang, X., McCallum, A.: Topics over time: A non-markov continuous-time model
of topical trends. In: Conference on Knowledge Discovery & Data Mining (KDD)
(2006)

26. Williams, J.B., Singh, L., Mezey, N.: # metoo as catalyst: A glimpse into 21st
century activism. University of Chicago Legal Forum p. 371 (2019)

27. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In:
The Web Conference (WWW) (2013)


