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Abstract. Social media and online news content are increasing rapidly.
The goal of this work is to identify the topics associated with this content
and understand the changing dynamics of these topics over time. We pro-
pose Topic Flow Model (TFM), a graph theoretic temporal topic model
that identifies topics as they emerge, and tracks them through time as
they persist, diminish, and re-emerge. TFM identifies topic words by cap-
turing the changing relationship strength of words over time, and offers
solutions for dealing with flood words, i.e., domain specific words that
pollute topics. An extensive empirical analysis of TFM on Twitter data,
newspaper articles, and synthetic data shows that the topic accuracy and
SNR of meaningful topic words are better than the existing state.

1 Introduction

Enormous amounts of content are being generated on social media, e.g., over
500 million tweets [9] and over 420 million status updates on Facebook [12] are
posted daily. One can use topic models to generate meaningful topics from these
text streams. Unfortunately, current topic model algorithms have a number of
weaknesses. First, the topics generated are often bogged down by noise words or
impacted by noise-generating bots, e.g., approximately 15% of Twitter accounts
are bots [16]. Second, domain specific corpora often have domain specific words
that are not discriminative of topics, but appear across all different topics. For
example, current topic models that generate topics about the extremist group
ISIS will generate topics that all rank the term ISIS (or a variant) amongst
the top terms for the topic. While obviously an important term, including it
in specific topics about ISIS does not improve the quality of the topics and
may make those topics look too similar. Finally, in some domains, the topics
themselves change so quickly that current methods have difficulty keeping an
up-to-date sketch of the active topics through time.

To begin addressing some of these limitations, we propose the Topic Flow
Model (TFM) for monitoring the ebb and flow of topics in noisy text streams,
e.g., Twitter, blogs, and online news. TFM identifies groups of content-rich topic
words from a semantic graph by finding meaningful subgraphs of words that
represent topics, and using relationship strength and frequency of words to de-
termine their importance to different topics through time. This approach also
effectively identifies and “drains” flood words, making the top ranked words
for the topic more discriminative. The contributions of this paper are as



follows: (1) we introduce TFM, a temporal topic modeling algorithm that iden-
tifies topics as they emerge; (2) we introduce the concept of flood words and
offer solutions to gracefully deal with them, and (3) we conduct an empirical
analysis of TFM on Twitter data, newspaper data, and synthetic data, showing
its effectiveness for identifying and monitoring changing topic dynamics under
different conditions.

2 Related Work

Many topic modeling algorithms have been proposed in the last two decades. The
most popular algorithms use probabilistic generative models. Latent Dirichelet
Allocation (LDA) [5] and its many variants [15] [17] [3] [11] [2] [14] belong to
this group of models, which rely on the assumption that documents are gener-
ated following a known distribution of terms. LDA finds the parameters of the
topic/term distribution that maximizes the likelihood of the documents in the
data set. These models have been successful for longer text documents written by
a smaller number of authors that have a fixed vocabulary, i.e., new words (hash-
tags) are not being created continually. Another direction for research considers
methods that have been used in the dimensionality reduction and clustering
literature [18][13] [10]. For example, Yan et al. perform topic modeling by ap-
plying non-negative matrix factorization to a term correlation matrix [18], an
approach that works better on short documents than generative models [18]. A
third direction of research uses a semantic graph to identify topics [1][7]. Topic
Segmentation [1], for instance, uses an undirected term co-occurence graph and
the Louvain modularity algorithm [6] to find topics in a data set. Cataldi et al.’s
Emerging Topic Detection (ETD) [7] employs a directed term correlation graph,
and uses a double depth-first search to find emerging topics in a temporal topic
modeling setting. Finally, some research focuses on post-processing the output
of topic models to make them more meaningful [8] [4].

Our work is closest in spirit to Cataldi et al. [7] since we also employ a
directed semantic graph and use that graph to identify topics. Our work differs
from their work in the following ways; 1) we track all topics through time, as
they emerge, persist, and diminish (Cataldi et al. focus on emerging topics), 2)
because we are interested in topics through time, we do not regenerate topics at
every time step, but instead use the topic knowledge from the previous time step
to help determine the changes to existing topics and identify new ones, 3) we
employ a new metric, the Energy-Nutrition ratio, to identify the most important
terms in the semantic graph and avoid using flood words to build our topics, and
4) we employ a more efficient graph traversal procedure (a constant depth BFS)
that identifies more accurate topic terms.

3 Background and Definitions

A document is an ordered list of terms (w1, ...wk), where k is the length of the
document. A topic T is a set of words believed to describe a theme or subject.



In our models, we will output M topics from a data set of D documents. The
set of documents are partitioned into τ time periods. We therefore take as input
Dt documents for each t ∈ τ , and output Mt topics at time t.

Not all words in a document are useful for topic generation. Stop words
are obvious words that are frequent, but content-poor. Noise words and spam
both detract from topic quality, polluting the topics. Another type of word that
pollutes topics is a flood word. A flood word is an important domain-specific
word occurring so frequently that it is relevant to nearly every topic. For example,
suppose we are interested in a data set about the recent presidential election.
It would not be surprising if every topic contained Trump and/or Clinton in
the top words related to the topic. While clearly relevant, we define these words
to be flood words since they are domain-relevant and frequent, but do not add
value to potential topics. Therefore, it is imperative to deal with flood words so
that they are not the dominant words in every topic generated by our model. To
help us keep track of the changing dynamics of words in topics, we now define
nutrition, energy, and Energy-Nutrition Ratio.

The nutrition of a term is an indicator of how popular a term is in the docu-
ment collection. More formally, nutrition(w) = (1− c) + c ∗ tf(w)/tf(w∗i ) where
w∗i is the most frequent term in document di, tf(w) is the term-frequency of the
input word w in di, and c is some constant between zero and one. nutrition(w)t is
the sum of these nutritions over Dt in time period t. We then normalize nutrition
by |Dt| to account for change in data set size over time.

The energy of a term considers the change in nutrition of that term over
time. More formally, energy(w) = Σs

i=1(nutrition(w)2t − nutrition(w)2t−i) × 1
i

where s is the number of previous time periods before t.
Because energy is a sum of squared differences, it is biased toward higher nu-

trition terms. A high nutrition term that sees a small change over time intervals
might still have a high energy compared to a low nutrition term that has a bigger
change relative to its original nutrition. We account for this relative change with

the Energy-Nutrition Ratio: ENR(w) = energy(w)
nutrition(w) A term with high nutrition

that sees a small change will see a relatively low change in its ENR, whereas a
term with low nutrition that sees a large change will see a big change in ENR.
We can compare a term’s current ENR and previous ENR to decide whether
the rate of growth is accelerating, constant, or decelerating. Because energy is
a polynomial function of nutrition, it grows and shrinks faster than nutrition.
This growth, or lack thereof, is captured in ENR.

Problem Statement: Formally, given τ time intervals, and Dt documents for
each t ∈ τ , find the set of topics Mt and flood words floodt for each t.

4 Topic Flow Model

4.1 TFM Overview

We now provide an overview of our proposed approach, Topic Flow Model
(TFM). The high level algorithm can be found in Algorithm 1. The input to



Algorithm 1 Topic Flow Model (TFM)

1: Input: Dt for each t ∈ (1, ...τ)
2: α, β, γ, δ, θ
3: Output: Mt, floodt, and Lt for each t ∈ (1, ...τ)
4: repeat
5: nutritiont = compute nutrition(Dt)
6: energyt = compute energy(α, nutritiont, nutritiont−1, Dt)
7: ENRt = compute ENR(nutritiont, energyt)
8: emerging = select emerging terms(α, β, γ, nutritiont, energyt, ENRt, Dt)
9: floodt = identify flood words(α, nutritiont)

10: C = compute term correlations(Dt)
11: G = create term correlation graph(δ, energyt, C)
12: Mt = {}
13: for term ∈ emerging do
14: new topic = discover topic(G, term, θ)
15: Mt = Mt + new topic
16: end for
17: for Ti ∈Mt−1 do
18: persistent topics = identify persistent topic(G, leaders(Ti), θ)
19: Mt = Mt + persistent topics
20: end for
21: Mt = merge topics(Mt)
22: Lt = identify leaders(Mt)
23: until t = τ
24: return M , flood, L

the algorithm is the set of documents for each time period and a set of tuning
parameters that will be described later in this section. For each time interval,
our algorithm begins by using nutrition, energy, and the ratio between the two
(ENR) to identify emerging terms, terms that have become important in the
current time period (line 8). It then creates a directed term-correlation graph
(line 11) and identifies the topics from the previous time window that persist
in the current time window (line 18). It does this using a double Breadth-First
Search (BFS) on the graph. Once all topics have been identified, topics are com-
pared and merged if sufficiently similar (line 21). Leader nodes are chosen for
each topic based on their centrality scores within their topic (line 22). TFM
outputs a set of topics, topic leaders, and flood words for each time window.
The remainder of this section describes the main parts of the algorithm in more
detail - identifying emerging terms, building and using the semantic graph, and
determining and merging topics. Throughout this section, we will make use of
the example presented in Figure 1. In the example, there are three time periods,
each containing three documents. The semantic graph, document frequency of
each word, and each word’s energy are shown for each time period.

4.2 Identifying Important Terms

One of the keys to generating good topics is identifying important terms. We use
nutrition, energy, and ENR to aid in this process. After computing these values
for each term, we can select the terms that fit within the thresholds of each
criterion. We define three separate tuning parameters, one for each value. Flood
words, by definition, have the highest nutrition. To avoid adding them to our
topics, we set an upper bound for nutrition (α). For energy, we do not want to



t1:  
d1={a, b, c} 
d2={d, e, f} 
d3={a, g, h, d} 
t2:  
d1={a, b, c} 
d2={d, f} 
d3={a, g, i, d} 
t3:  
d1 = {a, b, c} 
d2 = {j, k, m, h} 
d3 = {a, g, h, i}

t1 t2 t3

Freq1:{a=2, d=2, else=1} 
E1:{a=6, d=6, else=1.5}

Freq2:{a=2, d=2, else=1} 
E2:{a=2, d=2, i=1.5, b=0.5, 
c=0.5, f=0.5, g=0.5}

Freq3:{a=2, h=2, else=1} 
E3:{h=4.5, a=0, b=0, c=0, g=0, 
i=0.5, else=1.5}
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Fig. 1: Example of TFM graphs over time. Orange diamond nodes represent flood
words. Topics are color-coded. Red, blue, and green topics emerge in t1, and persist
until t2 or t3. The Purple topic emerges in t3.

consider any words with exceedingly low energy values, so we set a lower bound
on energy (β). In figure 2, we show how these initial two thresholds cut swathes
of terms from the list of potential emerging terms. Within the set of remaining
terms with high energy and high nutrition, we set an ENR threshold (γ) to weed
out terms whose growth is low compared to the previous time window.

Fig. 2: The effect of α and β thresholds
on term selection

For our running example, assume
s = 2, α = 1, β = 0, and γ = 1.
In figure 1, we see that terms a, and
d have the highest frequency in t1 and
t2, and terms a and h have the high-
est frequency in t3. Looking at nutri-
tion, energy, and ENR, we see that a,
d, and h have too high nutrition val-
ues and are identified as flood words in
different time periods instead of qual-
ifying as emerging terms. At time t2,
the nodes returning from time t1 have
lower energy levels than i, leading to i
being the only emerging term identified
in t2. As we will show, emerging terms
are important because we start travers-
ing the graph for topics from nodes rep-
resenting emerging terms.

4.3 Semantic Graph Construction

In order to determine topics, we construct a directed term-correlation graph.
Any word that is not a stop word can be a node in the graph. For edges, we
compute asymmetric term correlations [7], and then selectively add edges to our
semantic graph based on these correlations. The term correlation ctk,z of two
terms k, z at time t is:

ctk,z = log(
nk,z/(nk − nk,z)

(nz − nk,z)/(|Dt| − nz − nk + nk,z)
) · |nk,z

nk
− nz − nk,z
|Dt| − nk

| (1)



where: nk,z is the number of documents in Dt that contain both k and z; nz is
the number of documents in Dt that contain z; nk is the number of documents
in Dt that contain k. The term-correlation of two terms is the correlation of
the first term to the second term at time t, considering both co-occurrence and
individual occurrence of each term. An edge (u, v) in the graph will have a weight
equal to the correlation of u to v. In order for an edge to be added to the graph,
its weight must be greater than the median term correlation plus δ times the
standard deviation of correlations, where δ is a tuning parameter used to control
the number of edges in the graph. A higher value of δ will result in a smaller,
less connected graph, whereas a zero value will result in a maximally connected
graph. Many flood words have high-correlation incoming edges, but because they
are connected to so many other terms, their outgoing correlations are well below
the median value, preventing these edges from being added to the graph.

In our example, we see the connections between nodes that occur together
in a document. As we can see in time period t1, node a has incoming edges with
nodes b and c, because they co-occur in document d1, and it also has incoming
edges from nodes g, and h, which co-occur with node a in document d3. Note
that there are no outgoing edges from a or d because their correlations to other
terms are below the threshold for adding an edge in our example.

4.4 Finding Topics

Using the graphG, we build a set of topics for our current time interval. We define
two types of terms to focus on topic discovery: leader terms, and origin terms. A
leader term is a term that represents a specific topic, chosen by centrality score.
An origin term corresponds to a node from which we can start a topic search
in G. As we will describe below, an origin term can be an emerging term or an
existing topic leader. There are three main steps for finding topics: identifying
persistent topics, discovering emerging topics, and merging similar topics.

Emerging Topics. Starting at an origin, we perform a breadth-first search
(BFS) up to the depth limit θ to find other potential terms in the topic. We run a
second breadth-first search from any node found during the forward pass, looking
specifically for the origin. Since the graph is directed, we are not guaranteed to
find a path back to the origin term from every node. If we do find a path during
the backward pass, we assume the term is strongly connected to the origin, and
include it in the associated topic. Flood words have exceptionally low correlations
to other terms, and so even when included in the graph, it is unlikely that they
will be included in a cycle from an origin node.

Persistent Topics. To identify topics that have persisted from the previous
time period to the current window, we run our double BFS algorithm using the
topic’s existing leader as the origin, and compare the returned topic terms to the

existing set. We compute a topic distance: tdt1,t2 = min(|t1\t2|,|t2\t1|)
|t1∩t2| . A smaller

distance implies that the topics are more similar. A distance of zero means that
one topic is a subset of the other. If the ‘new’ topic is sufficiently similar to its
old self, we keep only the new version. Returning to our example, suppose θ = 1.



From each emerging term, we do a search to a maximum depth of one, where
the depth at the root is 0. The resulting topics are {b, c}, {b, c}, {e, f}, {e, f},
{g, h}, and {g, h}, with leader sets {b}, {f}, and {g}, respectively. These are the
topics we want to see since they do not include flood words. Duplicates occur
because the emerging terms had directed edges in both directions.

Merging Similar Topics. Once we have found a set of topics for our time
period, we must decide whether any are similar enough to merge into one. We
compare the shared terms of each pair of topics in the set using the distance
defined above. If the two topics share enough terms, we merge them by taking
the union of their terms, and choosing new leaders. Returning to our example, we
find duplicates of each topic because there are multiple emerging terms identified
for each emerging topic. Using our method of merging similar topics, we will
compare the topic membership of different topics and merge the duplicate topics.
Our final result in t1 is: {b, c}, {e, f}, {g, h}. In t2 and t3, topics {b, c} and {g, h}
persist. In t3, topic {j, k,m} emerges.

5 Empirical Evaluation

This section presents an empirical analysis of TFM and other state of the art
methods on a Twitter data set, a newspaper data set, and synthetic data sets.

5.1 Data Sets

For our synthetic data sets, we generate topics from a set of words, assigning each
a normally distributed random probability of appearing in a document with that
topic. By assigning different probabilities to different words, we are simulating
the nature of tweets containing few content-rich, important words mixed in with
many less useful words. 1 The synthetic data sets we generated each contain 200
vocabulary items, 500 documents, and seven topics over seven time periods. Our
synthetic data sets contain varying levels of flood words, 0%, 1%, 5%, 10%, and
15% of the total number of words in the vocabulary.

The Twitter data set is a daily random sample of 5,000 tweets about Donald
Trump from August and September 2016. We have a total of 280,000 tweets
split into weekly time periods. The newspaper data set consists of news articles
about Trump and Clinton from the Washington Post. The newspaper data set
contains 14,269 articles and spans the same time frame as the Twitter data set.

For our data sets, we evaluate the accuracy and quality of topics using recall
and Signal to Noise Ratio (SNR). The SNR is the ratio of terms in the approxi-
mated topic that belong to the true topic to the terms in the approximated topic
that do not belong in the true topic. Let Tnoise be the set of noise words in topic
T , and Tsignal be the set of signal words in topic T , then SNR =

Tsignal

Tnoise
.

1 Another way to simulate this is to sample from a Zipfian distribution. Our data
generator allows for distribution changes. For these experiments, we create a mixture
that is noisier and harder to generate topics from than a Zipfian sample.



5.2 Synthetic Data Evaluation

Table 1: Evaluation of synthetic data
sets varying the % of flood words

Using our synthetic data sets, we evalu-
ate four methods: TFM, Cataldi et al.
[7], LDA [5], and Topic Segmentation
(TS) [1]. For the static topic model al-
gorithms, we rerun them in each time
period to generate topics. Our settings
for TFM are: α = 4, β = 6, γ = 1, δ =
1.5, θ = 2. For both LDA and TS, we
need to specify the number of topics.
We show the results from the best per-
forming number of topics – LDA=7 and
TS=10. The results are shown in table
1. The first column shows the fraction
of flood words in the data set. In gen-
eral, TFM performs significantly better
across all three metrics at all the differ-
ent fractions of flood words. It is also
interesting to point out that its preci-
sion remains high even when the fraction of flood words in the data set is high.
This is because it has been designed to avoid generating topics around flood
words. In contrast, LDA performs best in terms of recall when the fraction of
flood words is low or nonexistent, and best in terms of precision at 5%. The
other three methods perform best when the fraction of flood words is set to 5%.

5.3 Twitter & Newspaper Evaluation

Researchers at Gallup worked with our research team to semi-manually create
a set of popular topics for the presidential election campaign in 2016. For each
week we have topics that persist, diminish and emerge. Because that initial topic
set was generated without considering tweets from Twitter, we augmented the
Gallup topics with appropriate hashtags and other topic words used on Twitter.
The average number of topics being discussed each week is 5.5.
Accuracy & SNR For this empirical evaluation, we compare TFM, Cataldi
et al. (Cataldi) [7], LDA [5], HDP [15], Topic Segmentation (TS) [1], Topics
over Time (ToT) [17], and Näıve Graph Properties on the Trump Twitter data
set. The Näıve Graph Properties method attempted to discover topics using
graph invariants, including degree, betweenness centrality, and eigencentrality.
We show only the best graph invariant results in this analysis. We set the number
of topics for LDA to 12 and 24 and for TS to 10 and 20. Using these parameter
settings for LDA and TS led to fewer noise words than other settings.

We present our findings in two forms: the number of ground truth topics
identified in each time interval in figure 3(a) (x-axis = time period, y-axis =
number of ground truth topics identified), and the average signal to noise ratio
of identified topics in figure 3(b) (x-axis = time period, y-axis = SNR). In order



for a ground truth topic to be considered accurately identified by a model, the
model must output a topic with an SNR of at least 0.5 in reference to that ground
truth topic. We see that the best performing algorithms are TFM and Cataldi,
followed by different variants of LDA. LDA does identify a significant number of
topics. TS identified one ground truth topic at time zero, but failed to identify
any others, while HDP and Näıve Graph Properties identified no ground truth
topics. TS’s failure to identify more topics stemmed from the large number of
noise words that it picked up in comparison to the number of ground truth words
when generating topics. HDP’s failure to identify ground truth topics seems to be
a result of overfitting of the topics. In each of its topic sets, every topic contained
almost the exact same terms. Notice that for both TFM and Cataldi, a warm-up
period is needed - neither perform well in the first time period. In terms of SNR,
TFM has the highest SNR of all the methods. Cataldi and LDA are comparable
to TFM in time periods in which they find the same number of topics.

We tested the best performers, TFM, Cataldi, and LDA on the Washington
Post data set, using the same ground truth topics used for the Trump Twitter
data set since we were interested in topics related to Trump. For TFM, we
used the following parameter values: α = 10, β = 2, γ = 2, δ = 1.5, θ = 2. We
present our accuracy results in figure 3(c). TFM outperformed Cataldi and LDA,
identifying nearly every topic in every time interval except for the first. In figure
3(d), we see that it has a high SNR across time windows. Cataldi identified one
or more topics in every time window except for the first, while both LDA options
find one topic in the third time window. The SNR of TFM was consistent across
all time windows. In the last time window, Cataldi had a higher average SNR.

Finally, due to space limitations, we cannot present a sensitively analysis for
all the different parameters. However, we pause to mention that small variations
of α, β, and γ do not impact the identified important terms significantly. Large
differences, on the other hand, do (as we will show in the next subsection).
In terms of the semantic graph, keeping θ low (around 2) reduces noise in the
discovered topics and improves efficiency. δ impacts the number of edges in G.
We have found that while the number of edges decreases significantly when δ
increases, the accuracy of selected topics does not decrease for our data sets.

5.4 TFM Flood Words Evaluation

We now present two cases that demonstrate the graceful handling of flood words.
Flood Word Retainment. The α parameter controls the removal of flood

words prior to generating G. In this experiment, we consider the case of set-
ting α = ∞, removing no flood words. When doing this on the Trump tweets
data set, we find that TFM only identifies two topics as emerging, hillary and
#debatenight. In both cases, no other words are identified as significant terms in
those topics. This suggests that the two terms were so much more frequent than
any other term that no other term could be reasonably assumed to be emerging
relative to these terms. When α is smaller, these two terms are correctly labeled
as flood words and over two dozen unique topics are identified. The debate topic
is still identified even though the associated hashtag is a flood word. We pause
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Fig. 3: a) Trump Twitter: Ground Truth Topics Identified by each method b)
Trump Twitter: SNR of each method c) Newspaper: Ground Truth Topics Iden-
tified by each method d) Newspaper: SNR of each method

to point out that it is typical for some flood words to be in the graph, but the
most extreme to not be. For the Trump tweet data set, the degree of the average
flood word in G is 935 and its average correlation is 0.29, while the degree for
the average topic word is 24 and the average correlation is 1.18. This highlights
the importance of not focusing topic discovery on flood words.

TFM vs. Cataldi Emerging Terms. For this case study, we compare
the emerging terms of TFM and Cataldi on the Trump tweet data set for two
different weeks, September 4th and September 11th. Figure 4 shows the TFM
emerging terms, the TFM flood words, and the Cataldi emerging terms as a Venn
diagram. This figure highlights a few interesting findings. First, the emerging
terms of Cataldi are all flood words returned by TFM, except for one word, tax.
Second, most of the flood words identified by TFM are very general domain
words, e.g. president, campaign, policy, people. These words are content-
poor within the domain because they cross a large number of more meaningful,
content-rich topics. There are a few terms that are more content-rich, Putin
being the most notable. In these cases, either the flood word was an emerging
term in the previous time window, so the topic has already been discovered, or
the term rose so rapidly that its presence in G would cause it to be the center
of a topic that is really a cluster of smaller topics merged into one.
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5.5 Execution Time Comparison: TFM & Cataldi et al.

Table 2: Execution Time
Comparison

# Edges TFM Cataldi

350,000 43s 5 days

190,000 39s 2 hrs

110,000 37s 28s

In this experiment, we compare execution times of
TFM & Cataldi on graphs of similar size. These ex-
periments were run on an Ubuntu 16.04 machine
with a 4.00 GHz processor and 16GB of memory.
Table 2 shows the results. We set the edge inclusion
parameters to levels such that the number of edges
in the respective graphs are similar. We tested al-
gorithms on a graph size of 350,000 edges, 190,000
edges, and 110,000 edges. The specific numbers were
chosen because the former was the approximate
number of edges seen using TFM’s optimal param-
eter settings, the latter was the optimal for Cataldi, and the middle gave reason-
able, albeit worse, results for both models, with respect to topic quality. Table 2
shows that TFM’s execution time is significantly smaller as the number of edges
increases. This occurs because the DFS used in Cataldi requires traversal of a
larger number of paths than the constant depth search used by TFM.

6 Conclusion

In this paper, we introduce the Topic Flow Model, and demonstrate its abilities
to not only identify emerging topics, but to track those topics through time.
We introduce the notion of flood words, and demonstrate how their graceful
handling is integral to identifying concise topics in noisy data such as tweets,
and even in less noisy data. We compare Topic Flow Model to state of the art
topic modeling algorithms and show that it identifies topics more accurately
with less noise than other methods. In future work, we plan to design extensions
of this model for other types of text, understand the impact of pre-processing
on topic model algorithms, and develop methods for reducing noise in topics.
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