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Abstract:
With the rapid growth of social media in recent years, there has been considerable effort toward
understanding the topics of online discussions. Unfortunately, state of the art topic models tend
to perform poorly on this new form of data, due to their noisy and unstructured nature. There
has been a lot of research focused on improving topic modeling algorithms, but very little focused
on improving the quality of the data that goes into the algorithms. In this paper, we formalize the
notion of preprocessing configurations and propose a standardized, modular toolkit and pipeline
for performing preprocessing on social media texts for use in topic models. We perform topic
modeling on three different social media data sets and in the process show the importance of
preprocessing and the usefulness of our preprocessing pipeline when dealing with different social
media data. We release our preprocessing toolkit code (textPrep) in a python package for others
to use for advancing research on data mining and machine learning on social media text data.

1 INTRODUCTION

With over 500 million
tweets [InternetLiveStats, 2021], over 300 million
Facebook Stories, and 500 million Instagram sto-
ries daily [Noyes, 2020], social media represents a
large stream of new data creation. Even smaller
social media sites like Reddit sees billions of posts
and comments every year [Foundation, 2021].
People are publicly sharing their thoughts and
opinions on different topics of interest. Unfortu-
nately, it is challenging to determine the topics
of these public posts because of high levels of
noise, varying grammatical structures, and short
document lengths.

Figure 1 shows examples of topics identified
from tweets by state of the art topic models dur-
ing the 2016 US Presidential election. When the
entire tweet is used as input into a topic model-
ing algorithm (the first three word clouds in Fig-
ure 1), we see that the topics contain stopwords,
hashtags, user handles, plural words, and even
misspellings. The last word cloud (bottom right)
uses preprocessed tweets and does not contain the
same amount of noise. We can determine that it
is about Trump refusing to release his tax returns.
While a great deal of effort has been spent creat-

ing topic models with social media data in mind,
little attention has been paid to the impact of
preprocessing decisions made prior to generating
topic models.

Researchers have found that many traditional
state of the art topic models perform poorly when
little or no preprocessing occurs. Some topic
models miss topics entirely. Others find topics,
but the topics are often polluted with a large
number of noise words [Churchill et al., 2018]. To
further exacerbate the situation, even though
there are vast semantic differences in the types of
data topic models are used on, research papers do
not preprocess data consistently, and sometimes
fail to say whether they do at all. This gives the
impression that preprocessing does not matter for
topic modeling. Or at a minimum, the choice of
preprocessing does not matter.

This paper investigates the role of preprocess-
ing, specifically for identifying high quality topics.
Given a document collection D, for each docu-
ment Di in D, we tokenize Di on whitespace to
get a series of n tokens Di = {d1, d2, . . . , dn}. To-
kens may be terms, punctuation, numbers, web
addresses, emojis, etc. We ask two questions.
First, which tokens should be removed prior to
topic model creation? Second, how can we de-



termine if we have done a good job preprocess-
ing? To help systematically conduct preprocess-
ing and assess the effectiveness of different prepro-
cessing decisions, we present textPrep, a toolkit
for preprocessing text data. Second, to demon-
strate its value and the importance of preprocess-
ing, we identify preprocessing rules and arrange
these rules into preprocessing configurations that
generate different data sets for use by topic mod-
eling algorithms.

We find that preprocessing has significant ef-
fects on topic model performance, but that mod-
els and data sets are not equally affected by the
same amounts and types of preprocessing. Some
models and data sets are more positively affected
than others, and in some cases, preprocessing can
hurt model performance. In general, for our case
studies, doing more thorough preprocessing helps
model performance far more than it hurts. Fi-
nally, we find that while certain preprocessing
methods can appear to produce similar quality
data sets, the quality of topics that are gener-
ated on these data sets can diverge quickly for
less apt configurations. Our hope is that by build-
ing an easy to use toolkit and demonstrating the
impact of certain preprocessing rules and configu-
rations on the quality of topics generated by state
of the art topic modeling algorithms on noisy so-
cial media data sets, more data scientists and re-
searchers will add preprocessing analysis to their
topic modeling pipeline, thereby enhancing their
understanding of the role played by preprocess-
ing.

The contributions of this paper are as
follows: 1) we make available a Python package
for topic model preprocessing that gives users the
ability to easily customize preprocessing configu-
rations 2) we define and formalize a preprocess-
ing taxonomy that combines useful preprocessing
rules and configurations, 3) we propose a sim-
ple preprocessing methodology that applies con-

Figure 1: Topic Word Clouds

figurations of rules to document tokens to gener-
ate better quality data sets that can be used by
topic modeling algorithms, 4) we conduct exten-
sive empirical case studies of preprocessing config-
urations on three large social media data sets, and
evaluate the data quality and topic quality of each
configuration using three different topic models,
and 5) we summarize our findings through a set
of best practices that will help those less familiar
with topic modeling determine which approaches
to use with which algorithms.

2 RELATED LITERATURE

Preprocessing. In the early 2000s, there were
a handful of papers related to data preprocessing
from the database community that focused
on enabling users to better understand the
quality of their data set [Vassiliadis et al., 2000,
Raman and Hellerstein, 2001], and describing
data quality issues focused on storage and prun-
ing [Rahm and Do, 2000, Knoblock et al., 2003].
More recently, researchers have shown
the impact of preprocessing on text clas-
sification [Srividhya and Anitha, 2010,
Uysal and Gunal, 2014]. Allahyari et al.
mention text preprocessing in their survey of
text mining, but do not evaluate any meth-
ods [Allahyari et al., 2017]. Our work considers a
much larger set of preprocessing approaches and
focuses on an unsupervised topic modeling task
as opposed to a supervised text classification
task. Denny and Spirling analyze the effects of
preprocessing political text data sets on multiple
different text classification tasks, including topic
modeling [Denny and Spirling, 2018]. However,
they only analyze the effects on Latent Dirichlet
Allocation (LDA), and the data sets that they
use are smaller than our study, with 2000 doc-
uments being the largest data set size in their
study. The authors main goal is to analyze the
difference between supervised and unsupervised
learning on political texts.

In the only other paper related to preprocess-
ing and topic model performance, Schofield et al.
analyze the effectiveness of removing stopwords
from data sets before performing topic model-
ing [Schofield et al., 2017]. They find that stop-
word removal is very helpful to topic model per-
formance. This approach is informative but only
assesses one preprocessing rule and uses speech
and newspaper text, not social media text. Our
work extends this literature by providing an in-



depth analysis of different preprocessing config-
urations on topic quality in noisy, shorter data
sets.

Topic Models. There are many types of topic
models ranging from generative to graph-based,
unsupervised, semi-supervised, and supervised.
In this paper, we focus on the most widely used
type, the unsupervised generative topic model.

The most prevalent topic model in the un-
supervised generative class of models is Latent
Dirichlet Allocation [Blei et al., 2003]. LDA
has inspired the vast majority of generative
models since its inception. It uses a bag-of-words
model, with the goal of finding the parameters
of the topic/term distribution that maximizes
the likelihood of documents in the data set over
k topics. LDA has inspired the vast major-
ity of other generative models, including HDP
[Teh et al., 2006], DTM [Blei and Lafferty, 2006],
CTM [Lafferty and Blei, 2006], Twitter-LDA
[Zhao et al., 2011], Authorless Topic Mod-
els [Thompson and Mimno, 2018], and Topics
over Time [Wang and McCallum, 2006].

Another model, Dirichlet Multinomial Model
(DMM) [Nigam et al., 2000], also known as the
mixture of unigrams model, was conceived before
LDA and differs in one main aspect. Whereas
LDA works under the assumption that every doc-
ument is generated from a distribution of top-
ics, DMM is simpler; it assumes that each doc-
ument is generated from a single topic. While
LDA’s ability to generate documents from a mix-
ture of topics is superior for most traditional
types of documents such as books, research pa-
pers, and newspaper articles, the simplicity of
DMM’s generation makes it well-suited for use
in social media posts, which are much smaller
and therefore more likely to truly be generated
from a single topic. DMM was improved, opti-
mized, and brought back to life by Yin and Wang
in 2014 [Yin and Wang, 2014].

More recently, language models have been
incorporated into topic models in an attempt to
make them more coherent. Word embedding vec-
tors, such as word2vec [Mikolov et al., 2013], are
the most prevalent language model to be incorpo-
rated. In models such as lda2vec [Moody, 2016],
GPUDMM and GPUPDMM [Li et al., 2016],
ETM [Qiang et al., 2016], WELDA
[Bunk and Krestel, 2018], ETM
[Dieng et al., 2019a], and D-ETM
[Dieng et al., 2019b], the language model
does not replace the topic model so much as it
augments the topic model. As their names in-

dicate, GPUDMM and GPUPDMM are derived
from DMM, holding on to the assumption that
documents are generated from a single topic.
GPUDMM uses word embeddings in a unique
way. In LDA and DMM, when a word is sampled
from a document, its frequency is incremented
in the topic/term distribution for the topic that
was drawn for its document. In GPUDMM (and
GPUPDMM), when a word is sampled, not only
is its frequency incremented, the frequencies of
those words closest to it in the embedding space
are incremented as well. This creates a ”rising
tide lifts all boats” effect, raising the likelihood
of words similar to the sampled word, and the
coherence of topics.

In our study, we use LDA [Blei et al., 2003],
DMM [Yin and Wang, 2014], and GPUDMM
[Li et al., 2016]. These three were selected be-
cause they represent the different generative ap-
proaches well. LDA is the traditional, ubiquitous
topic model, DMM represents a social media-
tailored approach, and GPUDMM represents the
newer word-embedding aided methods.

3 textPrep: PYTHON
PREPROCESSING TOOLKIT

To encourage more consistent preprocessing for
topic models, we have created a Python prepro-
cessing toolkit for Topic Modeling (textPrep).1

The toolkit includes each preprocessing rule
we use to create our configurations, as well
as a streamlined pipeline for creating other
configurations. The toolkit takes advantage
of other standard text processing libraries,
including NLTK [Bird et al., 2009], and Gen-
sim [Řeh̊uřek and Sojka, 2010]. The rules can be
easily added to configurations, or used standalone
on a single document or a whole data set. Fur-
thermore, because rule modules are designed to
be used on a single document, they are ready out
of the box for use in preprocessing text using PyS-
park pipelines.

The preprocessing pipeline is designed in a
modular way that allows for others to add their
own preprocessing rules and use them in place of
or alongside the rules that are provided by de-
fault. The only requirement for a rule to be com-
patible with the pipeline is that a rule must be

1textPrep can be found at
https://github.com/GU-DataLab/topic-modeling-
textPrep



Figure 2: The Preprocessing Pipeline

passed a document in the form of a list of strings,
and return a document in the form of a list of
strings. This format allows for pipelines, which
also are passed and return a document in the
same form, to be stacked, allowing one to connect
multiple small pipelines in testing environments,
and combine them into a larger pipeline for pro-
duction environments or final stage experiments.

In addition to the preprocessing pipeline,
textPrep includes data quality metrics that we
use to evaluate data and topics in this paper.
They include vocabulary size (unique tokens), to-
tal tokens, token frequency, average token fre-
quency, average document length, average stop-
words per document, and token cofrequency.
These data quality metrics are useful when de-
ciding on the preprocessing configuration for a
given data set or experiment. It is important to
balance data quality metrics. High average token
frequency only matters if there is still a consider-
ably high vocabulary size – we do not want a data
set with a small number of very frequent unique
tokens, nor do we want a data set with a million
very infrequent unique tokens. Attaining better
data quality can save time and resources before
ever running topic models.

4 PREPROCESSING CLASSES
AND RULES

A preprocessing rule, r`, is an operation that
changes or removes a token. We apply a con-
figuration of rules Ck = r1, r2, . . . , rk to the set
of n tokens in Di to generate D′i. As an ex-
ample, a punctuation removal rule would return
a document with all punctuation characters re-
moved from each token. When the rules in C are
applied to each document in D, the result is a
modified document collection D′ (see Figure 2).
A topic model M generates a set of m topics

T = {tj |1 < j < m} that represent the themes
present in D. Each document, D′i, will be used by
M to generate topics T . In our case studies, we
will use different preprocessing configurations to
show the importance of good preprocessing when
performing topic modeling on social media data.

We divide sixteen different preprocessing rules
into four different preprocessing classes: ele-
mentary pattern-based preprocessing, dictionary-
based preprocessing, natural language prepro-
cessing, and statistical preprocessing. Table 1
presents the preprocessing rules (Rule), an expla-
nation of each rule (Rule Description), and also
gives a simple example of how each preprocessing
rule works.

Elementary pattern-based preprocessing fo-
cuses on reducing the number of tokens (e.g.
punctuation removal) and the variation (e.g. cap-
italization normalization) in tokens by searching
for known patterns in tokens that may indicate
noise in the context of topic identification. It also
includes rules that join existing tokens to improve
the semantic quality of the token (e.g. n-gram
creation). Typically, these rules are implemented
using regular expressions. Two rules - the hashtag
removal and the user removal rules - within the
elementary pattern-based preprocessing category
are specific to Twitter data sets since both have
special meanings on that platform. The rules in
this category tend to be the basic, standard ones
that researchers generally apply.

Dictionary-based preprocessing focuses on us-
ing a predefined dictionary (typically manually
created) to remove tokens (e.g. stopword re-
moval), standardize tokens (e.g. synonym match-
ing), or maintain tokens (whitelist cleaning).
Typically, these rules are looking for tokens that
match words/phrases in their dictionaries.

Natural language preprocessing leverages NLP
techniques to normalize or remove language to-
kens. These techniques tend to reduce the size
of the token space by understanding the linguis-



Rule Rule Description Example Tokens
Elementary Pattern-based Preprocessing
URL Removal Removal of tokens containing URLs Removed Token: http://aaa.com/index.html
Capitalization Normalization Make all tokens lowercase or uppercase Original Token: Tree Final Token: tree
Punctuation Removal Removal of all tokens that are punctuation Removed Token: !
Hashtag Removal Removal of tokens beginning with the hashtag (#) sign Removed Token: #ilovechocolate
User Removal Removal of tokens beginning with the @ sign Removed Token: @hillary
Malformed Word Removal Removal of tokens accidentally created because of other rules Removed Token: http
N-gram Creation N tokens are joined together to form a new token Original: i love cats Bigrams: {i love}, {love cats}
Dictionary-based Preprocessing
Stopword Removal Removal of common words that do not add content value Removed Token: the, is, am
Emoji Removal Removal of emoji and emoticon tokens Removed Token: :)
Synonym Matching Replace tokens that match a synonym in a given dictionary Synonym: obama=barack obama= barack
Whitelist Cleaning Retain only tokens that appear on a pre-created list Whitelist: [‘covid’, ‘masks’, ‘vaccine’, ‘pandemic’]
Natural Language Preprocessing
Lemmatization Shorten a token down to its lemma using NLP Original Token: better, Final Token: good
Stemming Shorten a token down to its base by removal of suffixes Original Token: giving, Final Token: giv
Part of Speech (POS) Removal Removal of tokens that are tagged as a certain part of speech Remove all adjectives
Statistical Preprocessing
Collection Term Frequency Cleaning Removal of tokens with a low frequency count in the data set Remove tokens that appear less than α times
TF-IDF Cleaning Removal of tokens with a low TF-IDF score Remove tokens with a TF-IDF score below β

Table 1: Preprocessing Rules

tic similarities and differences of tokens in each
document. Within this class of preprocessing, we
consider three rules: lemmatization, stemming,
and part of speech (POS) removal. Lemmatiza-
tion identifies linguistic roots of tokens and trans-
lates each token to that root. In order to accom-
plish this, algorithms consider the context and
POS of the token. Stemming considers only a
single token at a time (ignoring its context) and
removes inflections to obtain the root form of the
token. Finally, POS removal uses NLP to narrow
down our vocabulary to certain parts of speech,
e.g. only maintaining nouns.

Statistical preprocessing computes statistics
about tokens using information about the en-
tire collection to determine tokens that should be
maintained or removed. In this class of prepro-
cessing, we consider two rules: collection term
frequency cleaning and TF-IDF cleaning. Collec-
tion term frequency cleaning refers to removing
terms that have a particularly low frequency in
a data set (minimum DF), or a particularly high
one (maximum DF). TF-IDF (Term-Frequency,
Inverse Document Frequency) looks at term rel-
evance in a collection and removes tokens with a
low relevance.

Defining this preprocessing taxonomy pro-
vides us with a second way to interpret the col-
lection of rules that are most and least beneficial
for topic modeling preprocessing.

5 EMPIRICAL ANALYSIS

This section presents case studies that use our
preprocessing toolkit to assess the value of pre-
processing for topic modeling.

5.1 Data Sets

For our empirical evaluation, we analyze three
data sets from different social media sites: Twit-
ter, Reddit, and Hacker News. By using three dif-
ferent platforms, we can better understand how
similar preprocessing rules are across social me-
dia sources. This analysis focuses on English post
content.

The first data set, collected from Twitter be-
tween October 2020 and February 2021, contains
tweets about the Covid-19 pandemic. Tweets
were collected using the Twitter API, using 26
unique hashtags referring to Covid-19. The hash-
tags used to collect the data set were the English
hashtags used by Singh et al. [Singh et al., 2020].
This data set contains over 500,000 tweets.

The second data set, collected from Reddit,
contains posts about the 2020 United States Pres-
idential Election. This data set was collected us-
ing the pushshift.io library [Pushshift.io, 2021].
Reddit posts were collected from subreddits re-
lated to U.S. politics and the election from
September to election day on the first week of
November 2020. This data set has over 1 million
posts.

The third data set contains comments
collected from the Hacker News plat-
form [Moody, 2016]. Hacker News is a technology
and entrepreneurship news site that allows users
to comment and discuss articles. Collected
by Moody for testing lda2vec [Moody, 2016],
comments were only collected if the article had
more than ten comments, and if the commenter
had made more than ten comments in total.
Overall, there are over 1.1 million articles and
comments. The properties of each data set are
shown in Table 2.



Data Set # Docs # Tokens Tokens/Doc Stopwords/Doc Unique Tokens Token Frequency

Hacker News 1,165,421 80,604,631 69.16 28.95 1,613,253 49.96
Reddit 1,022,481 28,947,427 28.31 11.54 296,132 97.75
Twitter 565,182 12,826,812 22.70 6.46 558,189 22.98

Table 2: Data Set Properties

5.2 Preprocessing Configurations
and Baselines

To demonstrate the functionality of textPrep, we
create a set of preprocessing configurations and
compare the similarities and differences in the re-
sultant vocabulary set. We choose a lightweight
and heavyweight configuration for each data set,
and compare each to two baseline preprocessing
configurations. The first baseline consists only
of tokenization and punctuation removal. This
is the bare minimum that one can do to prepare
data for topic modeling. The second baseline is a
common set of rules used to prepare data for topic
modeling, as used in the python library SciKit
Learn [Buitinck et al., 2013]. It entails tokeniza-
tion, punctuation removal, capitalization normal-
ization, stopword removal, and the removal of to-
kens that appear in less than five documents.2

Our lightweight configuration consists of the fol-
lowing rules: 1. URL removal, 2. Punctuation re-
moval, 3. Capitalization normalization, 4. Stop-
word removal.

The difference between the lightweight config-
uration and the second baseline is that we drop
frequency thresholding and introduce of URL re-
moval. The heavyweight configuration consists of
all of the rules in the lightweight configuration,
plus: 1. Short word removal, 2. Lemmatization,
3. N-gram creation.

For n-gram creation, we used a minimum fre-
quency of 512 for n-grams to replace their compo-
nent words. To choose the threshold for n-gram
creation, we tested values ranging from 64 to 1024
(powers of 2), and found that 512 offered the best
balance between speed and number of n-grams
created. If the threshold is set too low, it will
take too long to create n-grams and too many n-
grams will be created. If the threshold is set too
high, few or no n-grams will be created. Both
configurations for the Twitter data set, which we
consider to be a special case, also include hashtag
removal.

2The minimum number of documents varies by au-
thor, but usually lies between 2 and 10.

5.3 Evaluation Methods

Given that the goal of our experiments is to eval-
uate the effects of preprocessing on topic models
and on data quality, we separate our evaluation
into intrinsic and extrinsic methods. The intrin-
sic evaluations are meant to directly assess data
quality, and the extrinsic evaluation entails eval-
uating the effects of preprocessing through the
downstream task of topic modeling.

Intrinsic Evaluation Methods Our pri-
mary approach for evaluating data quality is by
counting the number of tokens that are removed
by preprocessing. Comparing the size of the vo-
cabulary before and after applying certain prepro-
cessing rules can show the relative impact that
these rules have on data quality. Since all con-
figurations except for the first baseline remove
stopwords, the number of stopwords per docu-
ment drops to zero for those configurations. We
calculate the average frequency of individual to-
kens before and after certain preprocessing steps.
A higher average frequency of tokens indicates
that preprocessing rules are successfully remov-
ing noisy or less frequent tokens without hav-
ing to use a minimum frequency threshold such
as in baseline 2. Furthermore, smaller vocab-
ularies coupled with higher average token fre-
quency make for better topic modeling condi-
tions. A smaller vocabulary (filled with good con-
tent words) means that less memory is required to
train a topic model. Topic models also have fewer
words to choose from, meaning that they will be
less likely to make mistakes. A higher average to-
ken frequency means that relationships between
words can be more easily reinforced in the topic-
word distribution, leading to more accurate and
coherent topics.

Extrinsic Evaluation Methods We use
the downstream task of topic modeling to
evaluate the effect of preprocessing on data
quality. We use LDA [Blei et al., 2003],3

DMM [Yin and Wang, 2014], and
GPUDMM [Li et al., 2016].4 These three

3specifically the Mallet implementation of
LDA [McCallum, 2002]

4the implementations from the Short Text Topic
Model survey [Qiang et al., 2019]



Configuration # Tokens Unique Tokens Avg. Freq.

Baseline 1 28,947,427 296,132 97.75
Baseline 2 15,267,929 246,307 61.99
Lightweight 14,053,743 51,399 273.42
Heavyweight 11,776,937 326,874 36.02

Table 3: Data Quality Statistics for each preprocess-
ing configuration on the Reddit data set

topic models represent different approaches
to generative topic modeling, as discussed in
Section 2. In order to evaluate the quality of
topic modeling results, we use topic coherence
and topic diversity.

Topic coherence, or a model’s ability to
produce easily interpreted topics, can be
computed using normalized pointwise mu-
tual information (NPMI) [Lau et al., 2014].
NPMI uses word co-occurrences to capture
how closely related two words are. Many
recent topic modeling papers have employed
NPMI or one of its variants to assess the co-
herence of their models [Dieng et al., 2019a,
Dieng et al., 2019b, Qiang et al., 2016,
Quan et al., 2015, Li et al., 2016]. For a pair of
tokens (x, y), we define the probability of them
appearing together in a document as P (x, y).
We use this probability to compute the NPMI of
a topic t ∈ T as follows:

NPMI(t) =

∑
x,y∈t

log(
P (x,y)

P (x)P (y)
)

− log(P (x,y))(|t|
2

) (1)

Higher mutual information between pairs of
words in a topic is reflected in a higher NPMI
score for the topic. A high NPMI indicates high
topic coherence.

The interpretability of topics is a moot
point if a topic model discovers the same co-
herent topic over and over again. To de-
tect redundancy in topic models, we employ
topic diversity. Topic diversity is the frac-
tion of unique words in the top 20 words of
all topics in a topic set [Dieng et al., 2019b,
Churchill and Singh, 2020]. High topic diversity
indicates that a model was successful in finding
unique topics, while low diversity indicates that
a model found a small number of topics multiple
times.

5.4 Reddit Case Study

Table 3 shows the data quality statistics for
each configuration on the Reddit data set. The
‘Avg. Freq.’ column shows the average fre-
quency of a token in the data set after being pre-
processed using the configuration. The Reddit

data quality shows that the configuration with
the smallest vocabulary is the lightweight config-
uration. This seems counter-intuitive at first, be-
cause the heavyweight configuration includes the
entire lightweight configuration, and the heavy-
weight configuration has over two million fewer
tokens in total than the lightweight configuration.

The difference is n-gram creation. N-gram cre-
ation is one of the few preprocessing rules that
adds unique tokens instead of removing them.
While it may reduce the total number of tokens
even further by combining multiple tokens into
one, this process also adds a unique token for each
n-gram that it creates. N-grams can help identify
very valuable content, but they are not always a
good thing. Given that most topic models ex-
cel when there is a smaller vocabulary and word
co-occurrences are less sparse, creating so many
n-grams may negatively impact topic model per-
formance in the end.

In order to determine if the heavyweight con-
figuration is negatively affected by the introduc-
tion of so many n-grams, we turn to topic quality
metrics. Figure 3 shows the performance of each
model on each configuration. Topic coherence is
plotted on the y-axis, and topic diversity is plot-
ted on the x-axis. LDA is represented by circles,
DMM is represented by triangles, and GPUDMM
is represented by squares. Baseline 1 is colored
purple, baseline 2 is blue, lightweight is green, and
heavyweight is red. We see that the heavyweight
configuration does not necessarily give worse top-
ics than the lightweight configuration. In LDA
and DMM, heavyweight gets a slightly higher
topic coherence than lightweight and baseline 2.
In GPUDMM, lightweight wins on coherence, but

Figure 3: Topic Coherence (y) and Diversity (x)
Scores on the Reddit Data Set



Figure 4: Topic Coherence (y) and Diversity (x)
Scores on the Hacker News Data Set

Configuration # Tokens Unique Tokens Avg. Freq.

Baseline 1 80,604,631 1,613,253 49.96
Baseline 2 39,943,951 135,754 294.24
Lightweight 39,991,122 134,609 297.09
Heavyweight 34,374,771 1,196,609 28.72

Table 4: Data Quality Statistics for each preprocess-
ing configuration on the Hacker News data set

gets a lower diversity than heavyweight. An-
other important point that we see in Figure 3 is
that preprocessing can effect models differently.
In LDA, which earns the best coherence and di-
versity scores, baseline 1 is competitive with the
rest of the configurations. However, in DMM and
GPUDMM, using more thorough preprocessing
configurations is important, and lifts coherence
by 45-57%, and diversity by 4-30%.

5.5 Hacker News Case Study

Table 4 shows the data quality statistics for
each configuration on the Hacker News data set.
Hacker News, despite having only about 140,000
more documents than the Reddit data set, has
over 80 million tokens, making documents over
69 tokens on average. This difference in initial
data size leads to different results in data quality
after configurations are applied. The heavyweight
configuration can only reduce the total number of
tokens to 34 million, still over five million more to-
kens than the unprocessed Reddit data set. Sec-
ond, the lightweight configuration fails to signif-
icantly lower the number of unique tokens com-
pared to baseline 2. In fact, the two configura-
tions lead to nearly identical data quality statis-
tics.

Figure 4 shows the topic coherence and diver-
sity scores for LDA and DMM on each prepro-

Configuration # Tokens Unique Tokens Avg. Freq.

Baseline 1 12,826,812 558,189 22.98
Baseline 2 7,983,422 505,170 15.80
Lightweight 7,270,421 62,879 115.63
Heavyweight 6,323,070 337,741 18.72

Table 5: Data Quality Statistics for each preprocess-
ing configuration on the Twitter data set

Configuration # Tokens Unique Tokens Avg. Freq.

Heavyweight 6,323,070 337,741 18.72
TF-IDF 10 5,143,060 7,292 705.30
TF-IDF 1 5,756,844 29,101 197.82
TF-IDF 0.5 5,885,067 46,091 127.68
TF-IDF 0.25 5,968001 64,950 91.88

Table 6: Data Quality Statistics for TF-IDF configu-
rations on the Twitter data set

cessing configuration. GPUDMM is not shown
because, as a word embedding aided model that
relies heavily on memory, it failed to complete
on a server with 77GB of memory due to the
size of the Hacker News data set. Focusing in
on the baseline 2 and lightweight configurations,
Figure 4 shows us that the lightweight configu-
ration edges out baseline 2 for LDA and DMM,
while the heavyweight configuration performs the
best overall. The reversal of the lightweight and
baseline 2 configurations on the Hacker News data
set is another mark of how different it is from the
Reddit and Twitter data sets. As we saw in the
Reddit data set, and as we will see in the Twitter
data set, the lightweight configuration beats out
baseline 2 on these noisier data sets that consist
of smaller documents and more URLs.

5.6 Twitter Case Study

Table 5 shows the data quality statistics for each
configuration on the Twitter data set. Simi-
larly to the Reddit data quality, we see that the
lightweight configuration produces a far smaller
vocabulary and a far higher average token fre-
quency than any other configuration. Again,
the heavyweight configuration produces the least
number of total tokens, but a large vocabulary
(although not as large as in Hacker News). Fig-
ure 5 shows the topic coherence and diversity
scores for each topic model and configuration
combination. We see similar results to those of
Reddit, indicating that they have similar char-
acteristics relative to Hacker News. However, in
the Twitter data set, there is a clear benefit to
thorough preprocessing for every model including
LDA. Every configuration improves over baseline
1 in terms of coherence for LDA and both metrics
for DMM and GPUDMM.

In order to show the flexibility of the prepro-



Figure 5: Topic Coherence (y) and Diversity (x)
Scores on the Twitter Data Set

Figure 6: Topic Coherence (y) and Diversity (x)
Scores on Twitter Data Set, using TF-IDF rule

cessing pipeline, we delved deeper into configura-
tions for the Twitter data set. What if we could
reduce the size of the vocabulary to a number
similar to that of the lightweight configuration,
or even more? In order to do this, we add to the
heavyweight configuration a TF-IDF rule. The
preprocessing pipeline’s stacking ability allows us
to stack another pipeline containing a TF-IDF
rule without having to put the data through the
rest of the pipeline, so we can quickly iterate
through different thresholds for TF-IDF to get
the data qualities that we desire. We tried using
a TF-IDF rule with a threshold of 10, 1, 0.5, and
0.25.

Table 6 shows the data quality metrics of each
of these configurations compared to the original
heavyweight configuration. The thresholds of 10,

1, and 0.5 were all too high, and produced very
small vocabularies compared to the lightweight
configuration. However, the threshold of 0.25 pro-
duced a vocabulary that is similar to that of the
lightweight. The total number of tokens is similar
for thresholds between 1 and 0.25, so the real dif-
ference in data quality exists between threshold
10 and the rest. We can see that while the thresh-
old of 0.25 produces a similar size vocabulary to
the lightweight configuration, its average token
frequency is about 20% lower. With the prepro-
cessing pipeline, we were able to quickly tailor the
data qualities to our desired levels, allowing us to
get to topic modeling faster.

Figure 6 shows the results when using the TF-
IDF thresholds of 10 and 0.25, compared to the
lightweight and heavyweight configurations. In
the case of LDA, the TF-IDF threshold of 10 pro-
duced better coherence and diversity than the rest
of the configurations. Only DMM sees a better
topic coherence for the threshold of 0.25. Every
model benefits most in terms of diversity when
the threshold is set to 10. In this case, having the
lowest number of total tokens, smallest vocabu-
lary, and highest average token frequency resulted
in the best topics.

6 Discussion and Best Practices

After seeing the effects of preprocessing on three
unique social media data sets, it is safe to say
that preprocessing is necessary, but what is the
best configuration? Due to the vast differences in
social media platforms in terms of data quality,
we do not believe that there is truly one best con-
figuration. Data sets can be preprocessed with a
set of safe preprocessing rules, but there might be
a better configuration out there that offers some
significant improvements in model performance.
As we saw in the Twitter Case Study, the best
configuration might not be one of a few likely
choices. In comparing the Hacker News data set
to the Reddit and Twitter data sets, we found
that what is best for one data set is not necessar-
ily the best for the next data set. However, if we
need select a ”general purpose” model, LDA typi-
cally performs better than DMM and GPUDMM.
This is surprising given that the latter two models
should in theory be better suited for short texts.

With the textPrep preprocessing pipeline, it is
much easier to quickly iterate through preprocess-
ing configurations, assess data quality, and pro-
duce better topics. To begin the process of find-



ing a good preprocessing configuration, we rec-
ommend an iterative strategy that begins with a
configuration similar to the lightweight configu-
ration and stacks or removes one rule at a time
until the data quality and vocabulary seems rea-
sonable. The ability to filter by token frequency
as in baseline 2 is built into the pipeline, as well
as all of the rules that we used in these experi-
ments. textPrep also allows for easy integration
of new rules as new social media platforms with
new types of text post content emerge.

7 CONCLUSIONS

In this paper, we present textPrep, a text prepro-
cessing toolkit for topic modeling, and demon-
strate the value of good preprocessing in topic
modeling. We define preprocessing rules and ag-
gregate them into preprocessing configurations
that generate different data sets for use in topic
models. We add preprocessing analysis to the
topic modeling pipeline by providing easy to use
data quality metrics in textPrep. Through three
case studies on different social media data sets,
we show the value of the textPrep preprocessing
pipeline and its usefulness in quickly customiz-
ing and iterating through preprocessing configu-
rations to get the best data quality possible for
building topic modelings. We make this toolkit
available to other researchers as an attempt to
begin standardizing and elevating the importance
of preprocessing for different text mining tasks.
We hope that this encourages the data science
community to share preprocessing configurations
in their experimental results so that experiments
can be replicated, and we can better understand
the variability in data preparation for different
data mining and machine learning tasks.
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